organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 300 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.043 wR factor = 0.159 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Pyrrolidinium chloranilate

In the title compound, $2C_4H_{10}N^+ \cdot C_6Cl_2O_4^{2-}$, the pyrrolidinium and chloranilate ions are connected by N-H···O hydrogen bonds and arranged in an alternating manner to give an infinite molecular tape.

Comment

The title compound, (I), was investigated as part of a study on $D-H\cdots A$ hydrogen bonding (D = N, O, or C; A = N, O, Cl) in chloranilic acid-amine 1:1 and 1:2 systems (Ishida & Kashino, 1999*a*,*b*,*c*, 2000, 2001, 2002; Ishida *et al.*, 2001; Fukunaga & Ishida, 2003; Fukunaga *et al.*, 2003). Crystal structures of the chloranilic acid-secondary amine 1:1 system have been analyzed for the morpholinium, diethylammonium and piperidinium salts (Ishida & Kashino, 1999*c*, 2000; Fukunaga & Ishida, 2003), but the structure of the chloranilic acid-secondary amine 1:2 system has not yet been reported. In the present study, we prepared the 1:2 salt, (I), using pyrrolidine as a counter-base and determined its crystal structure.

In (I), the asymmetric unit is composed of $2C_4H_8NH_2^+ \cdot C_6O_4Cl_2^{2-}$; an acid-base interaction involving a proton transfer is observed between the chloranilic acid and

Figure 1

 $O\overline{RTEP}$ -3 (Farrugia, 1997) drawing of (I), with the atom-labeling scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. N-H···O hydrogen bonds are indicated by dashed lines [symmetry code: (i) x - 1, y, z].

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 17 March 2004

Accepted 4 May 2004

Online 15 May 2004

pyrrolidine (Fig. 1). The chloranilate ion shows a characteristic structure having four short C–C bonds [1.382 (3)– 1.416 (3) Å] and two extremely long C–C bonds [1.540 (3) and 1.544 (3) Å], which is explainable in terms of the double π system of the anion (Andersen, 1967; Benchekroun & Savariault, 1995). The chloranilate and pyrrolidinium ions are connected by N–H···O hydrogen bonds (Table 2) and arranged in an alternating manner to give a molecular tape running along the *a* axis (Fig. 2). The tapes are stacked along the *b* axis, such that the chloranilate ions related by an inversion center are stacked through π – π interactions, with an interplanar spacing of 3.346 Å and a centroid offset of 3.209 Å ($Cg \cdots Cg = 4.636$ Å; Cg is the centroid of each anion).

The pyrrolidinium cation, which is isoelectronic with cyclopentane, is expected to have ring flexibility as high as cyclopentane. Molecular-orbital calculations for the isolated cation in the gas phase showed that the twist form (C_2 form) is the stable conformation and that the envelope on N atom form (C_s form) is a saddle point of the first order (Ishida, 2000). Other twist conformations and envelope on C-atom conformations have not been optimized as stationary points. The difference in the electronic energy between the C_2 and C_s forms calculated at the HF/6–31G(d,p) level is 2.0 kJ mol⁻¹, which is small compared to the energies of intermolecular interactions in the solid. In the present salt, the N1–C7–C8–C9–C10 cation ring is close to the C_2 form, while the N2–C11–C12–C13–C14 ring is close to the envelope on C13 form.

Experimental

Crystals were obtained by slow evaporation of an acetonitrile solution of pyrrolidine and chloranilic acid in a 2:1 molar ratio.

Crystal data

 $2C_4H_{10}N^+ \cdot C_6Cl_2O_4^{2-}$ $M_r = 351.23$ Triclinic, $P\overline{1}$ a = 9.337 (3) Å b = 9.601 (4) Å c = 9.947 (5) Å $\alpha = 68.18 (3)^{\circ}$ $\beta = 84.25 (3)^{\circ}$ $\gamma = 71.52 (2)^{\circ}$ $V = 785.0 (6) \text{ Å}^3$

Data collection

Rigaku AFC-5*R* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.91, T_{\max} = 0.94$ 3821 measured reflections 3606 independent reflections 2522 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.159$ S = 1.093606 reflections 199 parameters Z = 2 $D_x = 1.486 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25 reflections $\theta = 11.2 - 11.8^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ T = 300 K Prism, dark red $0.40 \times 0.20 \times 0.15 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.014 \\ \theta_{\rm max} &= 27.5^{\circ} \\ h &= -12 \rightarrow 11 \\ k &= -12 \rightarrow 0 \\ l &= -12 \rightarrow 11 \\ 3 \text{ standard reflections} \\ \text{every 97 reflections} \\ \text{intensity decay: } 1.7\% \end{split}$$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.09P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e} \text{ Å}^{-3}$

Figure 2

Packing diagram showing a molecular tape formed *via* $N-H\cdots O$ hydrogen bonds (shown as dashed lines). H atoms except those attached to N atoms have been omitted for clarity.

Table 1

Selected geometric parameters (Å, °).

Cl1-C2	1.746 (3)	C1-C6	1.544 (3)
Cl2-C5	1.742 (2)	C2-C3	1.382 (3)
O1-C1	1.230 (3)	C3-C4	1.540 (3)
O2-C3	1.256 (3)	C4-C5	1.415 (3)
O3-C4	1.238 (3)	C5-C6	1.384 (3)
O4-C6	1.259 (3)	C7-C8	1.487 (4)
N1-C7	1.495 (3)	C8-C9	1.498 (5)
N1-C10	1.495 (3)	C9-C10	1.502 (5)
N2-C11	1.497 (3)	C11-C12	1.482 (4)
N2-C14	1.499 (3)	C12-C13	1.510 (5)
C1-C2	1.416 (3)	C13-C14	1.516 (4)
C1-C2-Cl1	117.3 (2)	O2-C3-C4	116.1 (2)
C4-C5-Cl2	117.4 (2)	O3-C4-C3	116.9 (2)
O1-C1-C6	117.1 (2)	O4-C6-C1	116.1 (2)

Table 2		
Hydrogen-bonding geometr	y (Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O2	0.89	1.91	2.791 (3)	169
$N1 - H2 \cdot \cdot \cdot O1^{i}$	0.89	2.39	2.962 (3)	122
$N1 - H2 \cdot \cdot \cdot O4^{i}$	0.89	1.98	2.824 (3)	158
$N2-H11\cdots O2$	0.89	2.12	2.841 (3)	138
$N2-H11\cdots O3$	0.89	2.26	2.930 (2)	132
$N2-H12\cdots O4^{i}$	0.89	1.96	2.783 (3)	153

Symmetry code: (i) x - 1, y, z.

H atoms were treated as riding atoms, with C-H = 0.97 Å and N-H = 0.89 Å. $U_{iso}(H)$ values were set at $1.5U_{eq}$ of the parent atom.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1990); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN for Windows* (Molecular Structure Corporation, 1997–1999); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997); software used to prepare material for publication: *TEXSAN for Windows*.

X-ray measurements were made at the X-ray Laboratory of Okayama University.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Andersen, E. K. (1967). Acta Cryst. 22, 196-201.
- Benchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186-188.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, 01793-01795.
- Fukunaga, T., Kumagae, N. & Ishida, H. (2003). Z. Naturforsch. Teil A, 58, 631-637.
- Ishida, H. (2000). Z. Naturforsch. Teil A, 55, 665–666.
- Ishida, H. & Kashino, S. (1999a). Acta Cryst. C55, 1149-1152.
- Ishida, H. & Kashino, S. (1999b). Acta Cryst. C55, 1714–1717.

- Ishida, H. & Kashino, S. (1999c). Acta Cryst. C55, 1923-1926.
- Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202-e204.
- Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476-479.
- Ishida, H. & Kashino, S. (2002). Z. Naturforsch. Teil A, 57, 829-836.
- Ishida, H. & Kumagae, N. & Sato, S. (2001). Z. Naturforsch. Teil A, 56, 523–526.
- Molecular Structure Corporation (1990). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation. (1997–1999). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.