Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail:

ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=300 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.159$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Pyrrolidinium chloranilate

In the title compound, $2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$, the pyrrolidinium and chloranilate ions are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and arranged in an alternating manner to give an infinite molecular tape.

Comment

The title compound, (I), was investigated as part of a study on $D-\mathrm{H} \cdots A$ hydrogen bonding ($D=\mathrm{N}, \mathrm{O}$, or $\mathrm{C} ; A=\mathrm{N}, \mathrm{O}, \mathrm{Cl}$) in chloranilic acid-amine 1:1 and 1:2 systems (Ishida \& Kashino, 1999a,b,c, 2000, 2001, 2002; Ishida et al., 2001; Fukunaga \& Ishida, 2003; Fukunaga et al., 2003). Crystal structures of the chloranilic acid-secondary amine $1: 1$ system have been analyzed for the morpholinium, diethylammonium and piperidinium salts (Ishida \& Kashino, 1999c, 2000; Fukunaga \& Ishida, 2003), but the structure of the chloranilic acidsecondary amine $1: 2$ system has not yet been reported. In the present study, we prepared the $1: 2$ salt, (I), using pyrrolidine as a counter-base and determined its crystal structure.

(I)

In (I), the asymmetric unit is composed of $2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{O}_{4} \mathrm{Cl}_{2}{ }^{2-}$; an acid-base interaction involving a proton transfer is observed between the chloranilic acid and

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I), with the atom-labeling scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines [symmetry code: (i) $x-1, y, z$].
pyrrolidine (Fig. 1). The chloranilate ion shows a characteristic structure having four short $\mathrm{C}-\mathrm{C}$ bonds $[1.382$ (3)1.416 (3) \AA] and two extremely long $\mathrm{C}-\mathrm{C}$ bonds $[1.540$ (3) and 1.544 (3) \AA] , which is explainable in terms of the double π system of the anion (Andersen, 1967; Benchekroun \& Savariault, 1995). The chloranilate and pyrrolidinium ions are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and arranged in an alternating manner to give a molecular tape running along the a axis (Fig. 2). The tapes are stacked along the b axis, such that the chloranilate ions related by an inversion center are stacked through $\pi-\pi$ interactions, with an interplanar spacing of $3.346 \AA$ and a centroid offset of $3.209 \AA$ ($C g \cdots C g=4.636 \AA$; $C g$ is the centroid of each anion).

The pyrrolidinium cation, which is isoelectronic with cyclopentane, is expected to have ring flexibility as high as cyclopentane. Molecular-orbital calculations for the isolated cation in the gas phase showed that the twist form (C_{2} form) is the stable conformation and that the envelope on N atom form (C_{s} form) is a saddle point of the first order (Ishida, 2000). Other twist conformations and envelope on C-atom conformations have not been optimized as stationary points. The difference in the electronic energy between the C_{2} and C_{s} forms calculated at the $\mathrm{HF} / 6-31 \mathrm{G}(d, p)$ level is $2.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which is small compared to the energies of intermolecular interactions in the solid. In the present salt, the $\mathrm{N} 1-\mathrm{C} 7-$ $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ cation ring is close to the C_{2} form, while the $\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ ring is close to the envelope on C13 form.

Experimental

Crystals were obtained by slow evaporation of an acetonitrile solution of pyrrolidine and chloranilic acid in a 2:1 molar ratio.

Crystal data

$2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$
$M_{r}=351.23$
Triclinic, $P \overline{1}$
$a=9.337$ (3) A
$b=9.601$ (4) \AA
$c=9.947$ (5) \AA
$\alpha=68.18(3)^{\circ}$
$\beta=84.25$ (3) ${ }^{\circ}$
$\gamma=71.52(2)^{\circ}$
$V=785.0(6) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.486 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=11.2-11.8^{\circ} \\
& \mu=0.43 \mathrm{~mm}^{-1} \\
& T=300 \mathrm{~K} \\
& \text { Prism, dark red } \\
& 0.40 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC- $5 R$ diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
$\quad($ North et al., 1968)
$\quad T_{\min }=0.91, T_{\max }=0.94$
3821 measured reflections
3606 independent reflections
2522 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.014 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-12 \rightarrow 11 \\
& k=-12 \rightarrow 0 \\
& l=-12 \rightarrow 11 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 1.7 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.159$
$S=1.09$
3606 reflections
199 parameters

Figure 2
Packing diagram showing a molecular tape formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (shown as dashed lines). H atoms except those attached to N atoms have been omitted for clarity.

Table 1
Selected geometric parameters $\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.746(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.544(3)$
$\mathrm{Cl} 2-\mathrm{C} 5$	$1.742(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.382(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.230(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.540(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.256(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.415(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.238(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.384(3)$
$\mathrm{O} 4-\mathrm{C} 6$	$1.259(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.487(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.495(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.498(5)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.495(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.502(5)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.497(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.482(4)$
$\mathrm{N} 2-\mathrm{C} 14$	$1.499(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.510(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.416(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.516(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$117.3(2)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$116.1(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 2$	$117.4(2)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$116.9(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$117.1(2)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 1$	$116.1(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.89	1.91	$2.791(3)$	169
$\mathrm{~N} 1-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	0.89	2.39	$2.962(3)$	122
$\mathrm{~N} 1-\mathrm{H} 2 \cdots 4^{\mathrm{i}}$	0.89	1.98	$2.824(3)$	158
$\mathrm{~N} 2-\mathrm{H} 11 \cdots \mathrm{O} 2$	0.89	2.12	$2.841(3)$	138
$\mathrm{~N} 2-\mathrm{H} 11 \cdots \mathrm{O} 3$	0.89	2.26	$2.930(2)$	132
$\mathrm{~N} 2-\mathrm{H} 12 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.89	1.96	$2.783(3)$	153

Symmetry code: (i) $x-1, y, z$.
H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-$ $\mathrm{H}=0.89 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}$ of the parent atom.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows.

X-ray measurements were made at the X-ray Laboratory of Okayama University.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Andersen, E. K. (1967). Acta Cryst. 22, 196-201.
Benchekroun, R. \& Savariault, J.-M. (1995). Acta Cryst. C51, 186-188.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fukunaga, T. \& Ishida, H. (2003). Acta Cryst. E59, o1793-o1795.
Fukunaga, T., Kumagae, N. \& Ishida, H. (2003). Z. Naturforsch. Teil A, 58, 631-637.
Ishida, H. (2000). Z. Naturforsch. Teil A, 55, 665-666.
Ishida, H. \& Kashino, S. (1999a). Acta Cryst. C55, 1149-1152.
Ishida, H. \& Kashino, S. (1999b). Acta Cryst. C55, 1714-1717.

Ishida, H. \& Kashino, S. (1999c). Acta Cryst. C55, 1923-1926.
Ishida, H. \& Kashino, S. (2000). Acta Cryst. C56, e202-e204.
Ishida, H. \& Kashino, S. (2001). Acta Cryst. C57, 476-479.
Ishida, H. \& Kashino, S. (2002). Z. Naturforsch. Teil A, 57, 829-836.
Ishida, H. \& Kumagae, N. \& Sato, S. (2001). Z. Naturforsch. Teil A, 56, 523526.

Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1997-1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

